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Over the last two decades, there has been an increasing public and scientific
awareness of the impact hazard posed by Near-Earth Objects (NEOs). We have
implemented an automatic process for updating orbital solutions for NEOs and
detecting those objects that have an Earth collision probability greater than
about 10, Since some NEO orbits are very uncertain, nonlinearites can be
large, and both Monte Carlo and multiple solutions methods are used for
detecting possible Earth close encounters in these cases. Close approach data
are collated and analyzed on the impact plane for each encounter. Automation
using robust algorithms is essential because of the large aumber of objects and
possible close approaches. This paper discusses the techniques and algorithms
used, and presents a few examples of asteroids which for a time had
significantly non-zero probabilities of colliding with the Earth. In most of these
cases, subsequent observations led to more precise orbital solutions and
eliminated the possibility of cellision.

INTRODUCTION

Over the last two decades, there has been an increasing public and scientific
awareness of the hazard posed by Near-Earth Objects (NEOs). Evidence has been
gathered to support the claim that an extraterrestrial impact was responsible for large-
scale extinctions at the boundary between the Cretaceous and Tertiary eras. More
recently, evidence has been found to support the theory that the even larger mass
extinction at the Permian-Triassic boundary resulted from an impact event. In response
to increasing public and congressional interest, NASA has increased its funding of
asteroid surveys, and adopted the goal of finding 90% of the kilometer-and-larger-sized
asteroids by the year 2008. The latest population estimates for these objects indicate there
are about a thousand of these objects; only 50 percent of them have been discovered to
date. During the course of these surveys, many hundreds of smaller NEOs have been
found, and hundreds of thousands remain to be found in the size range which would
survive passage through the atmosphere, should any be on a collision course with Earth.
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Asteroids and comets are often categorized according to their orbital character-
istics. To be called a Near-Earth Object an asteroid or comet must have a perihelion
distance less than 1.3 AU (1 Astronomical Unit is equivalent to 149,597,871 km). The
current number of known NEOs is about 1450, although most of these are relatively
small. If we restrict the count to near-Earth asteroids larger than 1 km in size, the current
number is about 500. Most of these objects cannot approach anywhere near the Earth
except perhaps on million-year timescales. A more specialized category called the
Potentially Hazardous Asteroids (PHAs) consists of those asteroids whose orbits
approach within 0.05 AU (19.5 lunar distances) of the Earth's orbit, and whose size is at
least 150 meters or so. The current number of known PHAs is about 310. Figure 1
shows the orbit of one of these, asteroid 1997 XF,;, which will make one of the closest
predicted approaches to the Earth in 2028. The line of nodes shown in the diagram is the
intersection of the orbit plane of the asteroid with the ecliptic plane. Close approaches
are possible when an object crosses through its line of nodes near the Earth's orbit.

In order to evaluate the threat posed by known Near-Earth Objects, they must be
tracked regularly, accurate orbits must be determined for each, and future close
approaches must be predicted. At JPL, we have for decades computed the orbits for
selected asteroids and comets, especially mission targets, and for several years, we have
maintained an on-line database of NEO orbit solutions and close approach predictions.
Recently, we have implemented an automated system for updating orbital solutions for
NEOs and detecting those objects that have an Earth collision probability greater than
about 10, A similar system has been in operation at the University of Pisa for over a
year [Ref: Chesley & Milani 2000DDA].

AUTOMATED ORBIT DETERMINATION FOR NEAR-EARTH OBJECTS

Orbits of asteroids and comets are determined primarily from ground-based
astrometric observations, which consist of right ascension and declination coordinate
pairs, together with the associated time tags and station coordinates. For newly
discovered objects, only a handful of these observations may be available, while for well-
observed objects, the data set may consist of hundreds or even thousands of observations.
Modern optical astrometric observations have accuracies typically better than one arc-
second, root-mean-square, with the dominant error source being the catalogued
coordinates of the background reference stars used to compute the object coordinates.
These observations are made by astronomers around the world, both professional and
amateur, and are sent to the Minor Planet Center in Cambridge, Massachusetts, which
serves as a clearinghouse for thiese data on behalf of the International Astronomical
Union. Objects which are large enough and approach close enough to the Earth can also
be observed using ground-based radar', which provides not only images of these objects,
but also highly accurate measurements of echo delay and Doppler shift. The round-trip
delay time can typically be measured to an accuracy corresponding to tens of meters in
the range between the radar station and object.
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In our automated process, new astrometric observations are automatically
downloaded every day from the Minor Planet Center web site
(http://cfa-www.harvard.eduw/mpec/RecentMPECs.html). For newly discovered objects, a
new observational data set is automatically created, and the preliminary orbit computed
by the Minor Planet Center is also downloaded from the web site. For known objects,
any new and/or corrected observations are automatically merged into the respective
observational files. Sometimes, two known objects observed at widely different times are
found to be one and the same, in which case the respective data sets are merged. New
radar observations of NEOs obtained directly from observers are also merged into the
observational data sets, and are archived on a JPL web site
(http://ssd.jpl.nasa.gov/radar_data.html). In addition to these daily updates, the system
automatically synchronizes with each monthly batch of Minor Planet Circular updates,
which include new observations and new orbit updates for NEOs, as well as corrected

observations.

The daily and monthly processing of NEO astrometric observations produces a list
of objects for which updated orbits must be determined, and this too is performed
automatically. The basic problem in orbit determination is to estimate an object’s six
orbital elements x at some epoch ¢, given a set of astrometric measurements z taken at
times f,,..., £,. The iterative process of differential corrections is used. At each step of
the iteration, the problem is linearized about the current best estimate of the orbit, the
equations of motion of the object are numerically integrated over the time span of the
observations, and predicted observations are computed. An improvement to the orbit is
then derived via the linear method of weighted least squares, which minimizes the
weighted sum of squares of the observation residuals (the differences between the actual
observations and predicted observations). The process is automatically iterated until
convergence is detected. A sophisticated rejection algorithm is used for outlier .
observations, although manual overrides can be used to force the inclusion of selected
observations. Upon completion, the orbit determination process produces an orbit
estimate X at an epoch within the time span of the observations, together with an
associated covariance matrix P, which describes the accuracy of the estimate. In solving
the weighted least squares problem at the heart of this process, rather than using the
standard normal-equation approach, we use a numerically more stable procedure called
the square root information filter [Ref: Bierman]. This method produces an upper
triangular square root information matrix R, from which the covariance matrix is

computed via the relation P=R"™ (R" )T.

The NEO orbital solutions generated by our automated system are tabulated daily
on the JPL Near-Earth Object web site (http://neo.jpl.nasa.gov).
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PREDICTION OF CLOSE APPROACHES AND LINEAR ANALYSIS OF CLOSE
APPROACH UNCERTAINTIES

Once the object’s orbit has been determined, its future Earth close approaches are
predicted by numerically integrating the nominal orbit solution forward in time,
monitoring the Earth-object distance, and detecting close approaches to within a
threshold distance of 0.1 - 0.2 AU. In fact, close approaches to all perturbing bodies are
detected, but only close approaches to the Earth are considered here. For objects with
well-determined orbits, we propagate several centuries into the future, but for the
majority of objects, we restrict the propagation to the next 50 to 100 years. The
integrator used is a variable-order, variable-step Adams method, which adjusts the step
size automatically so as to maintain a local velocity error of less than 10 AU per day.
The Earth and Moon are considered as separate perturbers, rather than as a combined
perturber located at the Earth-Moon barycenter. Perturbations by the three large asteroids
Ceres, Pallas, and Vesta are included, and the general relativistic equations of motion are
used. When the integrator senses a planetary close approach during a given step, it
automatically interpolates within that step to find the precise close approach time, which
is recorded along with the close approach distance.

In addition to predicting future close approaches of NEOs it is also important to
compute the uncertainties in the close approach circumstances. An asteroid or comet's
orbit cannot be known exactly, because the orbit calculation is based on imperfect
measurements, and the uncertainty in the orbit estimate will produce uncertainties in the
close approach predictions. A principal factor which determines the orbital accuracy of
an asteroid or comet is the time span over which the object was observed, referred to as
the data arc. A data arc of less than 10 days is very short, and will yield a fairly
uncertain orbit; a data arc of a few months to a year would yield a moderately accurate
orbit; and a data arc longer than the object’s orbital period (typically a few years) should
~ yield a fairly secure orbit. Secondary factors affecting the orbital accuracy include the
number and precision of the observations, the object's proximity to the Earth when
observed, and whether or not radar observations were used in the orbit solution.

The covariance matrix P is a measure of the uncertainty in an orbit solution, since it
describes the multivariate Gaussian probability density function centered on the nominal
solution in the space of initial orbital elements. The confidence region is the region about
the nominal where orbital solutions are still reasonably consistent with the observations,
as measured by a limiting number of standard deviations (sigmas). Under the assumption
of linearity, this region is an ellipsoid (typically in 6-dimensional space), and we may
speak, for example, of the 3-sigma confidence ellipsoid. If the confidence region is small
enough (i.e. the orbit is reasonably well determined), then it is well approxiinated by the

confidence ellipsoid.

The computation of the close approach circumstances is subject to an additional
possible source of nonlinearity, namely the propagation from the epoch of the orbit
solution (near the time of observation) to the epoch of the close approach. If the close
approach is not too far in the future, and the object does not make intervening deep close
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approaches to a perturbing body, then linearity can again be assumed. A linear
covariance procedure can be used to map the orbit uncertainty at the time of the
observations to position and velocity uncertainties at the predicted times of close
approach. The mapping is accomplished by computing the state transition or mapping
matrix Y(¢) = 0r(t)/dx at the close approach time f¢4, where r is the heliocentric
position vector. We compute this matrix via numerical integration of the so-called

variational equations,
- Cr(t) or(t) ¢
Y)=——=Y)+—2Y( s
0 o ) Fe Q)
where the partials of r(¢) are computed analytically. The variational equations are
numerically integrated at the same time as the equations of motion.

At each close approach, the so-called b-plane, or impact plane is computed, this
being the plane perpendicular to the incoming asymptote of the hyperbolic geocentric
trajectory[Ref Kizner]. The main parameter of interest is the geocentric position b of the
intercept of the incoming asymptote on the impact plane, which is called the impact
parameter. The object will impact the Earth if the magnitude of b is less than the capture

radius for the encounter, given by

2u

2
Vs,

r.=r, [1+

where 7, is the radius of the Earth, 4 is the gravitational parameter of the Earth, and v, is
the hyperbolic excess velocity of the encounter. The two b-plane components of b are
the first two of six b-plane elements x,. The square root covariance S, of the b-plane
elements may be computed by linearly mapping the orbital element square root
covariance matrix R™ via the state transition matrix and the Jacobian matrix for the
transformation to b-plane elements:

S, .—.(ﬁwﬁYJR-’.
or  ov

The upper left 2x 2 partition of P, =S,S,” describes the uncertainty in b, a 2-

dimensional marginal Gaussian probability density function displayed graphically as an
uncertainty ellipse. Even if the nominal solution does not lead to an impact, an impact is
possible if any part of the uncertainty ellipse intersects the Earth disk. The probability of -
impact is estimated by integrating this marginal probability density function over the
Earth’s disk via an efficient semi-analytic technique [Ref]. The third component of the b-
plane elements is the linearized time of flight, and its uncertainty represents the
uncertainty in the close approach time.

The resulting Earth close-approach data generated by the automated system are
tabulated daily on the JPL Near-Earth Object web site (http://neo.jpl.nasa.gov), where
they can be viewed in various sort orders: for example, by date, close-approach distance,
or object name. The quantities tabulated include the close approach time and its




uncertainty, the nominal and minimum 3-sigma close approach distances, the number of
sigmas by which the uncertainty ellipse must be scaled to yield a grazing impact, and the
impact probability. The current closest predicted Earth approach is that of asteroid

1999 ANy in the year 2027, with a miss distance of only 0.0026 AU.

MONTE CARLO ANALYSIS OF CLOSE APPROACHES

The linear analysis of close approach uncertainties described above may fail to
adequately describe the true uncertainties if the initial orbit solution is moderately
uncertain, or the predicted close approach is quite far in the future (i.e. the prediction
period covers many orbits of the object), or if the object makes intervening close
approaches to any perturbing body. The main problem is that the uncertainties grow too
large over the prediction interval, and the assumption of linearity in computing P, no

longer applies. Under simple Keplerian motion, position uncertainty along the orbit
grows linearly with time, while the uncertainty perpendicular to the orbit path remains
fairly bounded, especially normal to the orbital plane. If the orbit solution is even
moderately uncertain, then after several orbits of prediction, the confidence region may
subtend a fair fraction of the orbital circumference, or even wrap around the entire orbit.
This leads to numerous problems. Part of the uncertainty region may experience Earth
close approaches which go undetected because the nominal trajectory never approaches
within the threshold distance of the Earth. In addition, even if the occurrence of a close
approach is properly detected, the part of the uncertainty region nearest the Earth may be
so far from the nominal that linearity within the b-plane does not apply. Finally, some
portions of the uncertainty region may experience localized close approaches, producing
significant nonlinearities in the uncertainty region.

Monte Carlo techniques offer a robust approach for exploring the diverse set of
possible trajectories which evolve from a domain of orbit solutions at an initial epoch.
We have implemented two variations of the Monte Carlo technique for detecting possible
close encounters with the Earth. In the first approach, the six-dimensional ellipsoid
representing the uncertainty of the orbital elements at epoch is randomly sampled with
thousands of test points to create a set of initial conditions which are all then numerically
integrated forward in time and the close approaches recorded [Ref M&B, C&Y-SL9].
[The sample points are sometimes referred to as virtual asteroids (VAs), since they
follow the same equations of motion as the real object.] The samples are easily generated .
by applying a standard Gaussian random number generator to the square root covariance
matrix, and adding to the nominal solution [Ref:Girdwood]. Since they are all equally
likely, the samples are denser near the nominal solution, where the probability density
reaches a maximum, and become progressively sparse away from the nominal.

A second variation of the Monte Carlo technique must be used if the confidence
region in orbital element space is not well represented by the linear confidence ellipsoid,
as in the case of objects with very uncertain orbits. With this approach, sample points are
created by going back to the observations themselves and adding random noise vectors



according to the assumed observation error model. The orbit determination process is
then applied to each sample set of modified observations, and the resulting orbit solutions
become the sample points. Under this approach, the ensemble of samples will populate
the actual confidence region, whatever its shape. Although this method is more
computationally expensive than the first, it is generally needed only when the
observational data arc is short (typically less than 30 days), and in these cases, the
numerical integration required by the orbit determination process is relatively quick.

Regardless of which Monte Carlo variation is used, the numerical integration of the
sample points can yield hundreds or thousands of close approach detections to within a
threshold distance of 0.1 - 0.2 AU. The times of these close approaches are recorded,
along with the geocentric position and velocity vectors. When the close approaches of
the samples are collated by time, they cluster around separate encounter times, for
example when the Earth passes close to the asteroid’s nodal crossing point with the
asteroid nearby. We refer to the set of points which experience a close approach around a
given encounter time as a shower, since the concept is reminiscent of a meteor shower.
Sometimes the entire set of samples form a shower, but more typically the confidence
region is so spread out along the orbit that only a small subset of samples passes within

the threshold distance.

In order to perforra a two-dimensional analysis of each encounter, the close
approaches are then projected into a common b-plane for that encounter. To ensure
accuracy for cases approaching closest to the Earth, the b-plane is computed from the
trajectory of the case which makes the closest approach of the encounter. The figure of
the Earth in this plane will be a disk centered at the origin, with radius equal to the
encounter capture radius r.. (However, in some cases, we scale the b-plane diagrams by

r,/r, so that the Earth disk has radius r,.) A straightforward estimate of the impact

probability for the encounter is simply the ratio of the number of samples which lie
within the Earth disk to the total number of samples. Of course, this method will not
yield a satisfactory result if the number of points on the Earth disk is small. In this case,
the more sophisticated method described below must be used.

As an illustrative example of the Monte Carlo technique, we consider the case of
asteroid 1997 XF,;, which made the news in March 1998 because of a prediction that it
would make an extremely close approach to Earth in the year 2028, and a widely
misunderstood statement that a collision was “not entirely out of the question” [Ref
Marsden]. Even before pre-discovery observations from 1990 were found, a linear
analysis of the impact probability showed that the chance of collision in 2028 was
essentially zero, and the inclusion of the 1990 observations only served to confirm this
fact [Chodas& Yeomans G&C]. It was later suggested, however, that prior to the
inclusion of the 1990 observations in the data set (a somewhat hypothetical case), there
was in fact a small possibility that 1997 XF;, could collide with the Earth in the decade
or so after 2028 because the deep close approach in 2028 could alter the asteroid’s orbital
period in such a way as to bring it back even closer to Earth several orbits later
[Marsden]. Linear methods were completely inadequate to analyze these later collision
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possibilities because of the strong nonlinearity in the motion introduced by the 2028 close
approach. The Monte Carlo technique, on the other hand, could handle the analysis, and
was used to confirm that an impact in 2040 was indeed possible, with a probability on the

order of 107 [Ref: Girdwood].

Figures 2 through 6 show the evolution of the confidence region for this
hypothetical 1997 XF, case through the 2040 encounter. Figure 2 shows 500 sample
points populating the confidence ellipsoid at the epoch of the observations in 1998. The
region is about 54,000 km in length and oriented towards the Earth. Figure 3 shows the
confidence region thirty years later in 2028, when the nominal solution makes a close
approach about 90,000 km north of the Earth center. The region has grown to a length of
almost 3 million kilometers, but no part of the region passes closer than about 28,000 km
to the Earth. The deep close approach heavily perturbs the linear confidence region into a
loop, depicted in Figure 4, which shows the sample points 3 days after closest approach.
The small kink in the right part of the confidence region is actually a loop caused by a
close approach to the Moon. Figure 5 shows the situation two months later, when the
confidence region loop has grown to a diameter of about 9 million kilometers (for scale,
note the size of the Moon’s orbit). A year after the 2028 close approach, the loop has
stretched to a size of about 1 AU, as shown in Figure 6. Finally, in 2040, after 12 years,
the confidence region extends almost completely around the orbit, as shown in Figure 7,
and has broken further due to intervening close approaches to the Earth.

Although it cannot be seen in Figure 7, part of the confidence region for this
hypothetical 1997 XF,,; case cuts right across the Earth’s disk. Figure 8 shows the result
when a much larger set of Monte Carlo samples for this case are similarly propagated to
2040 and projected into the b-plane for that encounter. Points lying within the central
cizgle represent Earth impacts: 12 cases impacted out of 600,000. The two points below
the main group of points in Figure 8 took a different dynamical path to the 2040
encounter, passing the Earth in 2028 much closer than the points in the main group.
These originated from a different part of the confidence region, and are more highly
stretched by the 2028 encounter. We use the term stream to refer to the different subsets
of samples which have followed qualitatively different dynamical paths to the encounter.
The impact plane for the 2041 encounter is shown in Figure 9. In this case, four streams
are evident as offset tracks of points, two main streams and two highly stretched
secondary streams. One main stream and one secondary clearly cross the Earth, while the

other main stream just grazes it.

The streams for an encounter must be analyzed separately, since each has a separate
impact probability. One heuristic method of separating Monte Carlo sample points into
separate streams is to sort and index them according to their initial semimajor axis, as
each stream typically has a characteristic value. A more robust method will be discussed

in the next section.

Once the samples have been separated into streams, we need to find the minimum
possible close approach of the stream to the Earth. Starting from two points on either



side of the Earth disk, we compute the closest point along the line between them. We
then obtain a new sample by linearly interpolating to the corresponding point along the
line in orbital element space between the initial elements for the original two points. This
procedure can then be iterated to convergence. If the resulting minimum possible close
approach distance of a stream is less than one Earth radius, then we know that an impact

is possible for this stream.

The secondary stream in Figure 8 passes no closer than 14,000 km from the Earth’s
center, and we might therefore conclude that this stream cannot impact. But in fact, it is
necessary to compute the width of the confidence region at the minimum close approach
point. This can be accomplished by performing a linear analysis about this point and
computing the width of the target plane confidence ellipse. If the confidence region is
much narrower than the diameter of the Earth disk, as is the case for highly stretched
streams, a simple one-dimensional method can be used. For example, the impact
probability can be estimated by computing the linear density of points over a domain
centered on the origin, and multiplying by the chord length of the stream's Earth crossing.
If the width of the target plane confidence region is not negligible with respect to the
diameter of the Earth disk, two-dimensional methods must be used to compute the impact
probability [Ref: Girdwood].

Finally, we reiterate that the above analysis was based on a reduced observation
data set for 1997 XF); because that was such an interesting case. We have performed a
similar non-linear Monte Carlo analysis using the full set of observations for this asteroid,
and conclude that 1997 XF,, has no significant chance of colliding with Earth for at least

a century. '

LINE OF VARIATION ANALYSIS OF CLOSE APPROACHES

While the Monte Carlo method samples the confidence region in a random way,
another technique called the Method of Multiple Solutions [Ref] samples the region in a
systematic order, which simplifies many of the algorithms for analyzing the close
approaches. Furthermore, like our second variation of the Monte Carlo technique, this
method can be used even if the confidence region in orbital element space is large and not
adequately represented by the linear confidence ellipsoid. Typically the region has one
long dimension in 6-dimensional space and is slightly curved. The important
characteristic of this new method is that it samples only the main axis of the confidence
region, which is called the Line of Variations. Starting at the nominal solution, this
method consists of taking small steps of constant sigma value along the eigendirection
associated with the largest eigenvalue of the covariance matrix. At each step point, the
orbit and covariance matrix are re-determined, but the solution is constrained to lie in the
plane perpendicular to the eigendirection. In this way, a series of solutions are obtained
which essentially follow the main axis of the confidence region away from the nominal
case. Stepping continues in both directions away from the nominal until the rms of the
residuals reaches a 4-sigma value. For example, with a sampling step size of



0.001 standard deviations, this method yields a set of 8000 samples along the line of
variations.

Once the sample points have been generated, they are numerically integrated
forward in time, as before, and all the close approaches within the threshold distance are
recorded. The close approach data are then sorted by time and separated into showers, as
with the Monte Carlo techniques. In splitting the shower into separate streams, the
algorithm can exploit the fact that the samples are ordered: streams are easily detected as
sequences of consecutive samples within the same shower. The analysis performed on
each stream to find the minimum possible close approach point, the width of the
confidence region, and finally the impact probability is much the same as described

above.

Figure 10 shows an example of the use of line of variations sampling. In this case
we consider the encounter of lost asteroid 1998 OX4, which was observed for only 9 days
in 1998 and therefore has a very uncertain orbit. By the year 2046, this asteroid’s
confidence region has wrapped almost three times around the orbit. After the line of
variations was populated with samples at a step size of 0.001 sigmas, the points were
propagated to 2046, and projected into the b-plane. Four streams with multiple points
were detected, but only one highly stretched stream with a total of eight points cuts across
the Earth’s disk. The impact probability for this stream is on the order of 10°. The
lowest of the four streams is unlike the other three in that its sequence of points folds
back upon itself. Special methods are required to analyze the impact probability of such
interrupted streams, especially those which have folding points near the Earth.
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Line of Nodes

Figure 1 Orbit of Asteroid 1997 XF;
(Orbit inclined 4.1° to ecliptic plane; dotted portion below ecliptic)
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Figure 2 Positions of Monte Carlo points for 1997 XF,
at epoch of last observation in 1998
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Figure 3 Positions of Monte Carlo points for 1997 XFy,
at closest approach to Earth in 2028
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Figure 4 Positions of Monte Carlo points for 1997 XF,,
3 days after closest approach to Earth in 2028
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1997 XF11
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Figure S Positions of Monte Carlo points for 1997 XF,
2 months after closest approach to Earth in 2028
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Figure 6 Positions of Monte Carlo points for 1997 XFy,
1 year after 2028 closest approach
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Figure 8 Monte Carlo points for 1997 XF; projected
into b-plane for 2040 encounter
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Figure 9 Monte Carlo points for 1997 XFy; projected
into b-plane for 2041 encounter
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Figure 10 Line of Variation sample points for 1998 OX, projected
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